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Unsteady turbulence in uniformly stratified unsheared flow is analysed using rapid 
distortion theory (RDT). For inviscid flow with no molecular diffusion the theory 
shows how the initial conditions, such as the initial turbulent kinetic energy KEo 
and potential energy PEo, determine the partition of energy between the potential 
energy associated with density fluctuation and the kinetic energy associated with each 
of the velocity components during the subsequent development of the turbulence. 
One parameter is an exception to this sensitivity to initial conditions, namely the 
limit at large time of the ratio of potential energy to vertical kinetic energy. In 
the linear theory, this ratio depends neither on the Reynolds number Re, nor the 
Prandtl number Pr  nor the Froude number Fr. This is consistent with turbulence 
measurements in the atmosphere, wind tunnel and water tank experiments, and with 
large-eddy simulations, where similar values of the ratio are found. The RDT results 
are extended to show the effects of viscosity and diffusion where Re is not very large, 
explaining the sensitivity of the spectra and the fluxes to the value of the Prandtl 
number Pr. When Pr  is larger than 1, the high-wavenumber components of the three- 
dimensional spectra induce a vertical flux of temperature (density) that is positive 
(negative), and therefore 'countergradient.' On the other hand, when the thermal 
diffusivity is stronger and Pr is less than 1, lower-wavenumber components become 
countergradient sooner since the high-wavenumber components are prevented from 
becoming countergradient. When all the wavenumber components are integrated 
to derive the total vertical density flux, it becomes countergradient more quickly 
and more strongly in high-Pv than in low-Pr turbulence. All these theoretically 
derived differences between high-Pr and low-Pr turbulence are consistent with the 
experimental measurements in water tank and wind tunnel experiments and numerical 
simulations. I t  is shown that the initial kinetic and potential energy spectrum forms 
E ( k )  and S ( k )  near k = 0 determine the long-time limit values of the variances 
and the covariances, including their decay rate with time. In the special case of 
P r  = 1, the oscillation time period of the three-dimensional spectrum function is 
independent of the wavenumber and is the same as that of an inviscid fluid with 
the effect of viscosity/diffusion being limited to the damping of all the wavenumber 
components in-phase with each other. Furthermore, the non-dimensional ratios of the 
covariances, including the normalized vertical density flux and the anisotropy tensor, 
agree with the inviscid results if S ( k )  is proportional to E ( k ) ,  or if either S ( k )  or E ( k )  
is identically zero. However, even when P r  = 1, in the 'one-dimensional spectrum' in 
the x-direction, there is a transitory countergradient flux for high wavenumbers; only 
in this case is there a qualitative difference with the three-dimensioanl spectrum. This 
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paper shows that the characteristic differences in the behaviour of stably stratified 
turbulence reported in previous DNS experiments at moderate Reynolds numbers 
can largely be explained by linear oscillations and simple molecular or eddy diffusion 
rather than by any new kinds of nonlinear mixing processes. 

1. Introduction 
The transport of mass and heat in the atmosphere and ocean depends critically on 

how turbulence is affected by the presence of the stable density gradients in these flows. 
Recent laboratory experiments and numerical simulations on the unsteady turbulence 
in uniformly stratified fluid have shown how these effects are quite complex even 
without mean shear. Since the effects of stratification obviously affect the vertical 
transfer of both the dynamical scalars, heat or density, and the passive scalars, e.g. 
the concentrations of a pollutant, the most controversial and unresolved problem has 
been the qualitative and quantitative explanation of the countergradient transport of 
dynamical and passive scalars, which means that the heat and mass are transported 
by turbulent flux against the stratification. The phenomenon is sometimes observed as 
a net time-averaged effect (e.g. Komori et al. 1983) but often only as a weak transient 
effect (e.g. Itsweire, Helland & Van Atta, 1983; Lienhard & Van Atta 1990; Yoon 
& Warhaft 1990). Similar effects have been noted in several numerical simulations 
such as that of Gerz & Yamazaki (1993). With little theoretical justification, this 
mechanism has hitherto been explained by the nonlinear, oscillatory turbulent ‘mixing’ 
of fluid. However, any theoretical explanations should clarify in which respect the 
phenomenon is nonlinear, and in which respect it is linear; a fuller knowledge of the 
linear effect should be the starting point of the study of nonlinear phenomena. 

In this theoretical study we examine linear mechanisms for stratification effects and 
in particular for the countergradient flux. We apply linear rapid distortion theory 
(RDT) to unsheared stratified turbulence and obtained the analytical form of the 
three-dimensional spectrum functions, with the aim of understanding the differences 
in the time-dependent spectral behaviour of the low ( P r  < 1) and high ( P r  > 1) 
Prandtl number flows. We also show the special character of turbulence when 
P r  = 1, which surprisingly is in many respects similar to that of a non-diffusive fluid. 
Deissler (1962) first used this approach, by calculating linearized two-point correlation 
equations to show the difference of the form of three-dimensional spectrum functions 
when the Prandtl number is 0.7 and 10. Our calculations are more general in that 
the effects of the initial conditions, in particular the effect of the initial turbulent 
kinetic/potential energy and their spectral form, are considered. These calculations 
extend those of Hunt, Stretch & Britter (1988), by obtaining the results in analytical 
form so that several new insights emerge. We note that the dependence on P r  
is different in one-dimensional spectra and three-dimensional spectra near P r  = 1. 
This difference is important since in experiments only the one-dimensional spectra 
are measured. We also consider those long-time asymptotics of the covariances that 
change with time very slowly or not at all, because, as explained by Townsend (1976) 
and Hunt & Carruthers (1990), these particular asymptotic results of linear theories 
are often applicable to steady-state turbulent flows, such as those in atmospheric and 
oceanic stratified turbulence. We have compared our theoretical results with recent 
experiments and direct numerical simulations (DNS). The comparison of our theory 
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with the experiments and DNS helps clarify which are the truly linear and nonlinear 
phenomena in these flows. 

2. RDT equations 
We consider a homogeneous unsheared turbulent flow placed in a uniform density 

gradient (dp/dx3) in the x3-direction, which is anti-parallel to the gravitational 
acceleration. The governing equations by rapid distortion theory (RDT) (Townsend 
1976) in the frame of reference moving with the uniform mean flow are 

(g + K k 3 )  p^ = N2G3, 

where N is the Brunt-Vaisala frequency given by N 2  = -(g/po)(dp/dx3), and the 
Fourier coefficients Gi(i = 1,2,3) and p^ are defined in terms of the velocity and density 
fluctuation by 

u, = Gi(k, t)elk.I, 
k 

and 

(2.3) 

Here, po is the reference density, p is the perturbation density, v is the viscosity 
coefficient and K is the diffusion coefficient. When there is no shear, the wavenumber 
does not change with time and 

- = 0, dkl 
dt 

which greatly simplifies the subsequent analysis. Note that in (2.1), the pressure 
gradient is replaced by an exact expression in terms of b. 

In the non-dimensionalized form of the governing equations (2. l), (2.2), there are 
three non-dimensional parameters, i.e. the Prandtl number P r  = V / K ,  the Reynolds 
number of the turbulence Re = U L / v ,  and the Froude number Fr = U / N L  (e.g. Riley, 
Metcalfe & Weissman 1981). While the Prandtl number is a constant of the fluid, 
Re and Fr are defined by the local turbulence parameters L, the integral length scale 
and U the r.m.s. velocity, which is determined by the large-scale eddies. The relative 
effects of viscous stresses and stable stratification on different sizes ( 1 )  of the eddies, 
whose velocities are u( l ) ,  are characterized by 'eddy' Reynolds and Froude numbers 
defined as Re/ = u( l ) l / v  and Frl = u(l)/Nl. 

However, for characterizing the overall features of laboratory experiments where 
the length scale and r.m.s. turbulence velocity vary with time (in the moving frame), 
it is conventional to use the 'mean flow' Froude number = g / N L o  and the mean 
flow Reynolds number Re = gLo/v,  where U is the mean velocity and LO is the 
- grid size often denoted by M .  Since in most experiments U - lO-*v, it follows that 
Fr+Fr.  

I t  is important to note the conditions for which the RDT in stably stratified flow is 
valid. They are given by the conditions that the nonlinear term (u-V)  u ( u = ( u ~ ,  u2, u3), 
I u /= O(u)  ) in the Navier-Stokes equations is small compared to the buoyancy term 
gp/po (Derbyshire & Hunt 1985), and that the term (u - V ) p  is small compared to 
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u3dp/dx3. Using the eddy size 1 and its characteristic velocity u(Z), the nonlinear term 
in (2.1) is expressed as? 

(u.V)u=O (T), 
while the buoyancy term is 

g -p = O(uN2t)  
Po 

if N t e  1 

if N t  3 1 and Frl = -41, 
U 

= O(uN)  
N1 

where Frl is the eddy Froude number, and the buoyancy advection term is 

for these two conditions. Once t is greater than the oscillation period N-', Frl is a 
measure of nonlinearity, and therefore the RDT approximations, i.e. (2.1) and (2.2) 
are valid if Frl 4 1. 

Since 
U 

(at low and moderate Re), (2.8a) 

= 0 (E l /31 - -2 /3 )  

(at high Re, where f is the local turbulence energy dissipation rate), (2.8b) 

the condition F q G l  can be related to a condition applying to the Froude number for 
the energy-containing eddies Fr(= U I N L ) .  At low and moderate Re, 

F r l 4  1 - F r 4  1, (2 .9~)  

and at high Re, 

(2.9b) 

Thus in laboratory experiments and DNS for low- or moderate-Re flows, RDT is 
valid for low values of Fr. On the other hand, it is clear from (2.9b) that at high Re, 
for the smaller scales of turbulence with 1/L < Fr3f2 ,  Frl satisfies Frl 3 1 so that 
RDT is not valid for all scales of motion even if Fr is small. This is consistent with 
the well established experimental results of geophysical turbulence where it is found 
that at small scales the turbulence is not affected by body forces (see for example the 
review by Hunt & Vassilicos 1991). 

We consider in this paper only the unbounded fluid and do not consider the effect 
of the outer solid boundary that usually exists in laboratory experiments. The effect 
of the periodic boundary condition, usually used in DNS, has also to be considered 
for a more complete comparison with the numerical simulations. These effects could 
be considered using the methods described in this paper. 

t Note also that the nonlinear terms neglected in (2.1) and (2.2) are the Fourier coefficients of 
the eddy inertial term (u - V)u  and of the eddy density-gradient acceleration term (u 6 V ) p .  
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3. Inviscid fluid 
3.1. Calculation ,for spectra 

We first consider the inviscid fluid. In this case the analytical results confirm and 
extend the previous numerical solutions of the inviscid RDT equations by Hunt 
et a!. (1988). The results also explain the short-time development obtained in experi- 
ments and DNS where the effect of viscosity and diffusion are negligible. By assuming 
v = K = 0 in (2.1)-(2.5) we obtain R, ( i  = 1,2,3) and p* as 

N’ 
a 

,6 = b0 cos at + - u , ~  sin at,  

1 
1 

N’ 
- C 3 0 ( ~ o ~ a t -  1) , 
a2 
N’ -G30 (cosat - 1) , 

k 2  a a2 

where 
(k? + 

N ,  k 
a =  (3.5) 

and the subscript 0 denotes the initial values. 
Then we can calculate all the three-dimensional spectrum functions. The results are 

QP3(k, t )  = $?*a, + p*c; 
(3.6) 2a 

a 

1 N2 
4a2 - -~,3(k,O)(cos2at - 1) , 

(3.7) 

(3.8) 

I 1 N 2  [ 4N’ 4a2 GP,(k,  t )  = GPP(k,  0) + 2N2 --QPP(k, O)(COS 2at - 1) - --&(k, O)(COS 2at - 1) , 

(3.9) 
where an overbar denotes the ensemble average. 

In this study we assume the initial density fluxes to be zero, i.e. 

Qpi(k,  0)  = 0 ( i  = 1,2,3), (3.10) 

as in the previous numerical simulations. Although some laboratory experiments 
(e.g. Lienhard & Van Atta 1990) suggest E ( t  = 0) # 0, we ignore this possibility 
because there is no information about the initial spectral form of Gp3(k,0).  There- 
fore, throughout this study, theoretical (RDT) results are confined to the case of 
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@pi(k,O) = 0 ( i  = 1,2,3). The effects of non-zero Qpi(k,O) could be assessed by 
exactly following the method described hereafter. 

If in addition we assume that the initial velocity and density perturbations are both 
isotropic, the initial conditions are given by 

H. Hanazaki and J.  C. R. Hunt 

and 

Here 

and 

S(k) Qpp(k,O) = -2N2 
4nk2 

m 1 
2N2 PEo = - f Q,,(k,O)dk = 1 S(k)dk, 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

are the initial turbulent kinetic and potential energy. 
We now write the wavenumber vector in spherical coordinates as 

kl = k sin 0 cos 4, k2 = k sin 0 sin 4, k3 = k cos 0, (3.15) 

so that 

and 
k2 = k: + k i  + k:, 

(k t  + k;)’” - kH _ -  
k k ’  

sin8 = 

(3.16) 

(3.17) 

where the horizontal wavenumber kH is defined by 

k H  = (k: + ki)1’2. 

3.2. Variances and covariances 

(3.18) 

Substituting (3.11) and (3.12) into (3.6), we obtain the vertical flux of density as 

m(t) = 1 Qp3(k, t)2nk2dk sin Odd 

= : E r )  1‘ d0 sin2 0 sin(2Nt sin O ) ,  (3.19) 

where EF) = K E o  - 2PEo is the complementary energy. 
Other variances and covariances can be calculated similarly and the results are: 

<(t) 2 = 2(t) = AKEo + iPEo + $ E r )  1’ d0 cos2 0 sin 0 cos(2Nt sin O ) ,  (3.20) 

1’ u:(t) = + 2PEo) + f E r )  dQ sin3 0 cos(2Nt sin Q), (3.21) 
- 

and 

p2(t) = iN2(KEo + 2PEo) - f N 2 E r )  dQ sin 8 cos(2Nt sin 0). (3.22) 1’ - 

Some examples are plotted in figure 1 for two initial conditions PEo/KEo=O and f. 
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The latter is the case when the potential energy is equal to the vertical kinetic energy 
(cf. figure 3 of Hunt et al. 1988). Note here that, as for inviscid unstratified shear 
flow (Townsend 1976), all these functions depend only on the total initial kinetic and 
potential turbulence energy ( K E o  and PEo) and not on the precise form of the initial 
kinetic and potential energy spectra E ( k )  or S ( k ) .  We also note that, as expected for a 
linear analysis, the oscillation periods of these functions are completely independent 
of the initial conditions and depend only on the value of N. Accordingly the zeros 
of pui(t) are determined only by an integral that contains Nt. On the other hand, 
the oscillation amplitudes are determined by E;‘). Then, the unsteady part of the 
covariances all vanish when EA‘” = 0. This corresponds to the initial equilibrium state 
of the turbulence. When PEo = 0, the value of EF’  is KE,, while when PE, = ~ K E o ,  
it is fKEo, which leads to an amplitude that is only f as large (see figure Id). 

The short and long time limit of variances in (3.19)-(3.22) are as follows. When 
Nt61, 

m(t) = iN’tEF’, (3.23~) 

(3.23 h)  

(3.234 

(3.23d) 

) in the limit of t --+ 0. If we 
-1 12-11 2 

substitute KEo = 0, we obtain pu?/(p2 u i  ) ( t  + 0 )  = - (5/6)’12 = -0.913. This 
agrees with the published DNS result of Gerz & Yamazaki (1993), which show 

pU,/(p2 u3 ) ( t  + 0) = -0.914 (Dr Gerz has privately communicated that the value 
was actually -0.913). The value obtained by a separate linear theory of Chasnov 
considering only the limit of t + 0 (see the Appendix in Gerz & Yamazaki) is 
-(5/6)”2 and exactly agrees with our results. (Note that the sign of the vertical 
density flux changes when we use the temperature instead of the density. In RDT, 
the effect of pressure is incorporated implicitly.) If we substitute PEo = 0 into (3.23), 
we obtain pu3/(p2 u3 ) ( t  -, 0) = 1. If we substitute KEo = i u f (0 )  and PEo = 0, we 
recover the short-time approximation of Hunt et al. (1988) (see their $2.3.1). 

The long-time ( N t a  1 )  approximations are obtained from (3.19)-(3.22) using the 
method of steepest descents as 

- - 

uf(r) = u:(t) = $KEo - &E[;C”N2t2, 

q(t) = ;mo - & E ‘ C ) N ~ [ ~  15 0 

T(t) = 2N2PE, + $Ef”N4t2. 
+ / 2 7 1 / 2  

Using these results, we can calculate pU,/(p- u? 

- 1 / 2 3 1 ; 2  

- 1 / 2 7 1 / 2  - 

n 112 

Nt 
pulit) = iNEAC’ (-) sin (2Nt - in). (3.24~) 

(3.24b) 

(3.24~) 

- - 

cr;’(t) = u;(t)  = ;KE() + 
- 112 
u$) = ‘(KE o + 2pE0) + i E F )  (&) cos (2Nt - i n ) ,  

2 ( C )  71 

Nt p ’ ( t )  = iN’(KE0 + 2PEo) - aN E, (-) cos (2Nt - in). (3.24d) 

This analytical method shows that the time-dependent part of (3.24) comes from 
near k3  = O(0 = n/2),  which means infinite vertical wavelength. This suggests that, 
when we consider the long-time development, we have to consider the effect of the 
‘finite’ extent of fluid that we usually encounter in laboratory experiments. Exact 
comparison with DNS requires consideration of the periodic boundary conditions. 
However, the effects are important only in the unsteady part of (3.19)-(3.22). Then, 
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while the unsteady part decays with time, the steady part becomes dominant at long 
time and therefore the confinement effect is not actually significant. 

It is important to note that the oscillating parts of the variances and the covariances 
decay with time in proportion to t-1/2 even without viscosity and nonlinearity. 
The damping of oscillation is essentially a characteristic of inviscid fluid without 
nonlinearity. The expressions (3.6)-( 3.9) for the three-dimensional spectra show that 
the oscillation period T is given by T = n/a = n k / ( N k H ) .  This means that if we 
look at the time variation on the time scale of N t / n  w 1 as is usually done, the 
spectral components which satisfy k / k H  = sin-'6 w 1, i.e. 6' w n/2,  are distorted 
significantly, while the distortion is very small in the spectral region where k/kH+ 1, 
i.e. where 6' w 0, n. This is the reason why in the unsteady part of the variances 
and the covariances, the contribution from a certain part of the wavenumber space 
k H / k  !x 1 (6 w n/2)  is dominant and the contributions from other components are 
less effective. As time proceeds (N t%- l )  the contributing region of 6' becomes much 
more restricted to a narrower band near 6' = n/2  and the value of the integral decays 
with time. 

We also note that the oscillation period asymptotes in a long time to t = n / N ,  
which is the period of buoyancy oscillation. It is noteworthy that in the long- 
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0 2 4 6 8 10 

1 

4 . 8  I I 

0 2 4 6 8 10 

Nt 
FIGURE 1. Time development of the covariances in inviscid fluid using RDT. Solid lines show the 
results for PEo = 0 and the dashed lines show the results for PEo = 4 K E o .  The arrows show the 

values in the long-time limit. (a) q(t)/2(O); ( b )  q(t)/q(O); ( c )  ~ ( t ) / N * ~ ( O ) ;  ( d )  m/(p2 u: ) ( t ) .  
-1 12-112 

time approximation of q ( t ) ,  the time-dependent term vanishes. This shows that the 
fluctuation in the horizontal kinetic energy decays rapidly, faster than K t - ' / 2 .  

It is of interest to note that the energy ratio ER of potential energy to vertical kinetic 
energy, ER = (p ' /2N2) / (&2) ,  is equal to 3/2 in the long-time limit, independent 
of the initial conditions KEo and PEo, provided the initial turbulence is isotropic. 
This asymptotic value is also the same in the viscous/diffusive fluid irrespective of 
the Prandtl number, Reynolds number and the initial conditions (see $4). The value 
roughly agrees with the observed value of about ER = 1.0 f 0.3 in the atmosphere 
(Nieuwstadt 1984; Hunt, Kaimal & Gaynor 1985). Wind tunnel experiments ( P r  = 
0.7) by Yoon & Warhaft (1990, their figure 20) show that the value ER is less than 1, 
but the largest time ( N t  = 3 )  attained is not large enough for comparison with the 
long-time-limit theoretical value. The experiments for two-layer thermally stratified 
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fluid ( P r  = 6) by Komori & Nagata (1995) show that, for the largest time ( N t  = 5.6) 
attained, the ratio ER is about 1.25, although there is still some tendency for it to 
increase with time. For the case of salt water (Pr - 600), LES for shear flow gives 
a value of ER = 2.3 for Richardson number Ri = 1.0, but this tends to reduce for 
larger Richardson numbers (see figure 8 of Schumann & Gerz 1995). Under the limit 
of no diffusion(rc -+ 0) and N t  --+ co, Pearson, Puttock & Hunt (1983) showed that 
the energy ratio approaches ER 2: ip, where is a coefficient of O( 1) depending on 
the spectrum of turbulence, which decreases with Fr and its maximum is less than 2. 

3.3. Special cases 

When PEo = 0 (and KEo = iq(0) = ;q(O)), we obtain the steady part of (3.24) (or 
in the limit of N t  -+ 00) as 

On the other hand, when PEo = fK& = ' s ( O ) ,  i.e. when the turbulent potential 
? 3  energy is equal to the vertical turbulent kinetic energy initially, we obtain 

Since the steepest descents give a good approximation (Hinch 1991) even for finite 
times and the oscillation decays with time, (3.25) and (3.26) can be compared with the 
values at 2 < N t  < 10 obtained directly from (3.19)-(3.22) by averaging over several 
oscillation periods (see figure 1). 

4. Effects of viscosity and diffusion 

We next consider the same problem with viscosity and diffusion. The solution of 
(2.1)-(2.5) gives iii (i = 1,2,3) and p̂  as 

4.1. Spectra 

(4.1) p^ = + Be4zt, 

A -vkzt { A  '$ [ A (e(qi+uk2)r - B 
u10 + - ') + q2 + vk2 (e(q2+vkz)c - l)] } , (4.2) u1 = e  

41 + vk2 

A B 
u2 = e 

where 

and a is given by (3.5). 
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The above solutions are valid when (v - K ) ~  k4-4a2 # 0. When (\J - K)* k4-4a2 = 0, 
separate treatment is necessary since the case of (v - K ) ~  k4 - 4a2 = 0 corresponds 
to the degeneration of the eigenvalues of the linear system (2.1) and (2.2). However, 
we see later that this is unnecessary in practice, so we do not show the results here. 
Using (4.1)-(4.4), we can calculate the three-dimensional spectral functions. The 
density-vertical velocity cospectrum is 

QD,3(k, t )  = ifi.63 + fi6; 
1 
x2 

+ N2[-(v - K ) k 2 ( 1  - cosat) + asin~t]@3~(k,O)} e-(v+K)k2t, 

= - { sin2 Q[-(v - K)k2( 1 - cos at)  - a sin c ~ t ] @ ~ ~ ( k ,  0) 

where 
a = (4” sin2 0 - (v  - K)’k4) 

When 2 is pure imaginary, we should use 

1 .  cos(at) = cosh(iat), sin(at) = sinh(iat), 
1 

in (4.9) and it becomes 
1 

@,,3(k,t) = - {sin2 O[-(v - rc)k2(coshPt - 1) - p sinhpt]@,,,(k,O) 
8* 

(4.9) 

(4.10) 

(4.11) 

+ N2[-(s - K)k2(coshPt - 1) + P ~inhpt]@~3(k,O)} e--(v+K)k2t, (4.12) 

Note also that Qp3(k, t )  asymptotes to a finite value in the limit of a + 0 or p -+ 0. 
where p = ia. 

In these limits both (4.9) and (4.12) become 

Qp3(k, t )  = { sin2 0 [-i(v - K)k2t2 - t] Qpp(k, 0) 

+ N2 [-i(v - ic)k2t2 + t ]  &(k,O)} e-(v+K)k2t, (4.13) 

which means that @,,(k,t) has no singularities. The case of a = 0 or p = 0 
corresponds to the degeneration of the eigenvalues of the linear system (2.1) and 
(2.2). Since (4.12) and (4.13) agree with those obtained independently by considering 
from the beginning the sign of 4N2 sin2 0 - (v  - ~ ) ~ k ~  in solving (2.1)-(2.5), we use 
henceforth a single form such as (4.9) for the expressions for QP3(k , t )  and similar 
functions. The expressions like (4.12) or (4.13) can be recovered by using the relation 
(4.11) or taking the limit of a + 0. 

Other spectrum functions can be obtained similarly but we note here a useful 
relation between those functions, which can be directly derived from (2.1) and (2.2). 
They are 

(4.14) 

($ + (v + K)k2) = ($ - s,,> QPp + N2Gr3, 

(g + 2vk2) = -265,~ 

(g + 21ck~) QPp = 2N2@,3, 

(4.15) 

(4.16) 

(4.17) 
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where relations essentially identical to (4.16) and (4.17) have been previously derived 
by Townsend (1976). The last two can be coupled to derive an equation for the energy 
conservation : 

(4.18) 

These relations can be used to derive other three-dimensional spectrum functions 
from GP3. Relation (4.14) can be used to derive @33 and (4.17) can be used to derive 
@,,; (4.16) can be used to derive Qll  +Q22. To be explicit Qi,, and @33 are obtained as 

2 2 . 2  ~ ~ , ( k ,  t )  = 012 { @&, 0) [N  sin e(i + cos at) - ;(v - h-12k4 cos at 

+ i ( v  - h-)k2a sin at] + @33(k, 0)N4( 1 - cos at)}  e-(s+K)k2t, (4.19) 

and 
2 

@33(k, t) = -? { ~ ~ , ( k ,  0) sin4 ~ ( c o s  at - 1) + @33(k, 0) [-N' sin2 O(I + cos at) 

+ $(v - cos at + $(v - ic)k2a sin at] } e-(s+K)kZt. (4.20) 

If we assume here again initial isotropy, substitution of (3.11) and (3.12) into (4.9) 
gives 

N 2  sin2 19 
@p3(k, t )  = 471k2a2 [-(v - h-)k2( 1 - cos at) ( E ( k )  + 2S(k)) 

+ a sin cxt ( E ( k )  - 2S(k))] e-(v+K)k2r. (4.21) 

4.2. Variances and covariances 
From (4.21), the vertical density flux (assuming that the initial turbulence is isotropic) 
is given in terms of the initial spectrum as 

x [-(v - h-)k2( 1 - cos at) ( E ( k )  + 2S(k)) + a sin at ( E ( k )  - 2S(k))] . (4.22) 

In the integration of (4.22), we have to use (4.11) or take the limit of a -+ 0 in the 
integrand where a2 < 0. Other covariances are given by 

x { N 2  sin2 8 [ ( E ( k )  + 2 S ( k ) )  - ( E ( k )  - 2S(k)) cos at] 

- ~ ( k )  [(v - h-)2k4 cos at - (v - h-)k2a sin at] } , (4.23) 

and 

x { N 2  sin2 8 [ ( E ( k )  + 2 S ( k ) )  + ( E ( k )  - 2S(k)) cos at] 

- E ( k )  [ i ( v  - ~ ) ~ k ~ c o s a t +  i ( v  - ~ ) k ~ a s i n a t ] } .  

-112-112 

(4.24) 

Then we obtain the normalized vertical density flux as m / ( p 2  u: )(t). 
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The one-dimensional spectrum in the x-direction corresponding to (4.21) and (4.22) 
can be calculated as 

x { -(v - I C )  (k :  + r 2 )  (1 - cosrxt) [ E  ((kt + r2)l") + 2s ((k: + 

+ a sin at [ E  ((k: + r 2 ) ' / * )  - 2s ((k: + r 2 ) ' I 2 ) ]  } , (4.25) 

with 

(4.26) 
k: + r2 

where ( r ,  cp) denotes cylindrical coordinates; kl is the wavenumber in the x-direction, 
r is the radial distance from the x-axis and cp is the azimuthal angle measured around 
the x-axis. 

An important feature of the three-dimensional spectral function (4.21) is that, 
when P r  > 1 (so that v - IC > 0), the viscous and diffusive effects act to induce the 
countergradient flux at high wavenumber k because of the term containing -(v - K ) k 2 .  

On the other hand, when P r  < 1 (i.e. v-K < 0), the viscous and diffusive effects act to 
prevent the countergradient flux at high wavenumber. The covariance m ( t )  given by 
(4.22) has the same feature. This explains why the water tank experiments for P r  > 1 
( P r  = 6 (thermal stratification), P r  = 600 (salt stratification), e.g. Itsweire et al. 1986; 
Komori & Nagata 1995) often show a stronger countergradient flux than the wind 
tunnel experiments ( P r  = 0.7 < 1) (e.g. Lienhard & Van Atta 1990). We should 
note that the initial isotropy assumed in (4.21) and thereafter is not essential to 
this result since the general three-dimensional spectrum function (4.9) has the same 
character. In DNS, Gerz & Yamazaki (1993) found in their three-dimensional spectra 
a persistent countergradient flux at high radial wavenumber when P r  = 2, but did 
not observe i t  when P r  = 1 (see their figure 14). When P r  = 1, M becomes simply 
M = 2N sin 8 and (4.21) oscillates like sin(2Nt sin O ) ,  with no dependence on the radial 
wavenumber k .  This shows that all the radial wavenumber components oscillate in 
phase. 

To see the special character of the turbulence when P r  = 1 (i.e. v - K = 0) we write 
the covariances in this case explicitly: 

' k: + r' cos' 'p) - (v - K)' (k: + r') ( ~- 

dk (E(k) - 2S(k)) e-'vk'f ln do sin' 8 sin(2Nt sin O ) ,  (4.27) 

- 
p2( t )  = [.Ii dk 2 (E(k) + 2S(k)) e-2"k'r 

do sin 8 cos(2Nt sin 6) , (4.28) 1 - lE dk (E(k) - 2S(k)) e-2"k'f 
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- 
u?(t) = &) 

= Lrn dk ( & E ( k )  + i S ( k ) )  e-2vk2t 

dk ( E ( k )  - 2S(k)) e-2vk2t 1' d8 cos2 8 sin 8 cos(2Nt sin 8), (4.29) 
0 

- 
u$(t) = dki(E(k) + 2S(k))e-2"k'* 

dk ( E ( k )  - 2S(k)) e-2vk2t d8 sin3 8 cos(2Nt sin 8) . (4.30) 1' 1 
The oscillation periods of these functions are independent of the initial condition 

E ( k )  and S ( k ) .  They do not depend even on KEo and PEo. They are determined only 
by the integrals such as 

(4.31) 

which are identical to those that determine the time development of the inviscid flux 
(3.19)-(3.22). Then the zeros of the vertical density flux m ( t ) ,  which correspond to 
the onset and disappearance of countergradient flux, agree with the inviscid result. 
Many studies using DNS have focused on the case of P r  = 1 (e.g. Riley et al. 1981, 
Metais & Herring 1989; Gerz & Yamazaki 1993). Our analysis shows that this case 
has rather special properties. The zeros for air-flow experiments, where P r  = 0.7, 
display similar results to those for P r  = 1. This explains why in many previous 
studies, the time at which the vertical flux vanishes does not show much sensitivity to 
the initial conditions. The amplitude of the oscillation is determined by E ( k )  - 2S(k), 
so that the time oscillation vanishes if E ( k )  = 2S(k). 

) ( t )  is that, 
when P r  = 1 and also E ( k )  and S ( k )  have the same form except for the multiplying 
constant, the normalized flux becomes exactly identical to the inviscid flux. As we see 
from (4.27), (4.28) and (4.30), if S ( k )  is proportional to E(k) ,  i.e. S ( k )  = CE(k) and C 
is a constant (= PEO/KEo 2 0), the integrals over k are cancelled out in deriving the 
normalized flux. Then the flux becomes identical to the inviscid flux calculated from 
(3.19), (3.21) and (3.22) assuming PEo = C E O :  

-1/2+/2 
What is interesting in the 'normalized' vertical density flux pu3/(p2 u j  

__ 
PU3 

-1 12--112 

(1 - 2C) 1' d8 sin2 8 sin(2Nt sin 8) 
- - 

2( 1 + 2C) - (1 - 2C) d8 sin 8 cos(2Nt sin 8) P2 4 

(4.32) 
1 

d8 sin3 8 cos(2Nt sin 8) $(l + 2C) + (1 - 2C) 1' 
When E ( k )  = 0 (i.e. K E o  = 0), the normalized flux again agrees with the inviscid flux 
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and it becomes 

- d8 sin2 8 sin(2Nt sin 0) oU7 .," - - - , a  

-I i2,1 i 2  
P2 u1 

12 + d0 sin Qcos(2iVt sin 6)] [$ - I" d8 sin' 8 cos(2Nt sin 6) 

(4.33) 
which is consistent with (4.32) in the limit of C -+ rx. 

In these cases, we can examine the purely nonlinear effects (without the effects of 
viscosity/diffusion) by comparing the normalized flux of RDT with those of DNS 
and laboratory experiments, or more generally, by considering the non-dimensional 
'ratios' of the covariances, including the anisotropy tensor (see figure 4 of 55). In 
laboratory experiments, the initial normalized flux is usually zero, implying neither 
KEo = 0 nor PEo = 0. As we have seen in $3.2, if PEo = 0, the initial normalized 
flux should be pu3/(p2 u: ) ( t  -+ 0)  = 1 # 0, and if KEo = 0, it should be 

pu3/(p2 u: ) ( t  -+ 0 )  = -(5/6)"' = -0.913 # 0. On the other hand, the main 
results of DNS by Gerz & Yamazaki (1993) (their cases A, B, C and H) and some 
of the results by Metais & Herring (1989) are for P r  = 1 with KEo = 0 or PEo = 0. 
Their results, which correspond to these cases, are compared with our RDT results 
in 55. 

The one-dimensional cospectrum given by (4.25) shows that, when P r  > 1 (i.e. v - 
K > 0), the viscous and diffusive effects act to enforce the countergradient flux at high 
wavenumber k,. On the other hand, when P r  < 1, the viscous and diffusive effects 
act to reduce the countergradient at high wavenumber. However, (4.25) has a rather 
complicated form and when P r  = 1 it becomes 

-1/2-1'2 

-1/2-1/2 

(kt  t r2 cos2 'p) 

(k:  + r 2 )  ' I2  
[ E  ((k: + r2)1/2) - 2 s  ((k: + r2 ) ' i2 ) ]  . (4.34) 

The effect of Pr  is not straightforward. Even when P r  = 1, calculation of 
(4.34) shows the appearance of a countergradient flux at high wavenumbers. Since 
( k :  t r2 cos2 q ~ ) I / ~ / ( k :  t r2)l I2  increases monotonically with kl, the oscillation period 
is smaller for larger kl. This is the reason why the high-wavenumber components 
'become countergradient' sooner. Note that this does not lead to the countergradient 
flux which is 'persistently localized' at high wavenumbers. This is merely a transitory 
countergradient flux at high wavenumbers. We consider this problem again in $5 
(figure 6). 

The short-time approximations (te 1) of the covariances in the presence of viscous 
and diffusive effects give the same results as for the inviscid theory at the leading 
order. For the calculation of the long-time approximations ( t + l )  of the density 
variance, we first rewrite (4.23) in the following form: 

* ' 
sin0 

0 ( E ( k )  + 2S(k))'"' dk 1' dOe--(L'+h)L -N sin + N' J m  (") x2 
\ --i, 
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where 

and 

- (v - IC)k2- 
sin a at7 1 cos at (IV' 

- S(k)  [(. - rC)2k4-- 
a2 

cosh Pt (') dke-(v+K)k2t sin % N2 sin2 % ( E ( k )  - 2S(k ) )  ~ 

P2 
cosh Pt(ul) sinh Pt (w2')] } + S ( k )  [(v - I C ) ~ ~ ~ - - - - - -  + ( V  - x)k2----- 7 (4.35) P2 P 

P = ia, (4.36) 

with 
( v  - K)' k4 

b =  1 -  ( 4N2 
(4.38) 

In the first and second integrals of (4.39, i.e. the terms with superscript ( I )  and (ZZ), 
the dominant contribution to the integral comes from k -+ 0. In the third integral 
(terms (111)-(V)), the dominant contribution comes from the dual limit of k --+ 0 and 
% -+ n/2. In the forth integral (terms (W)-( VTII)) the dominant contribution comes 
from the dual limit of k -+ ko and 8 -+ 0, rc, where ko is given by 

ko = ( N2sin20(v  + K ) 2  y4. 
V K  Iv - JGI 

(4.39) 

If we assume that E ( k )  and S ( k )  near k = 0, which must be of even order of k ,  

E ( k )  = a,&2' (1  3 1, 1 : integer), (4.40) 

S ( k )  = ask2' (1  3 1,  1 : integer), (4.41) 

the term with superscript (I) decays like cc t-('+'/2) in the long-time limit ( t  +. oo), the 
term with superscript (ZI) decays exponentially with time, the term with superscript 
(IZZ) decays like cc t-('+'), the term with superscript ( IV)  decays like cc t-('+3), the term 
with superscript ( V )  decays like cc t-(lf2) and the terms with superscripts (vI),( v I I )  
and (VTZZ) decay like cc t-( '+5/2). 

Then the dominant term in the long-time limit is the first integral with superscript 
(I) and the result is 

have the same form except the multiplying constant: 

The values of 3 and pu3 can be calculated similarly as 

(4.42) 

(4.43) 
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and 

These results show that, if E ( k ) , S ( k )  K k 2  in the limit of k + 0 (i.e. if 1 = 1) as 
noted by Saffman (1967), we obtain 

(4.45) 

and if E ( k ) , S ( k )  a k4 in the limit of k -+ 0 (i.e. if 1 = 2) (cf. Batchelor & Proudman, 
1956) as used in most of the DNS of the final decay of turbulence (Riley et al. 1981; 
Mitais & Herring 1989; Gerz & Yamazaki 1993), 

(4.46) 

From (4.42), (4.43) and (4.44) we note that the normalized vertical density flux in 
the long-time limit becomes 

(4.47) 

irrespective of the forms of E ( k )  and S ( k )  near k = 0. It shows a decaying oscillation 
with decay rate t-'l2 and an oscillation period n / N .  Even when E ( k )  and S ( k )  
have different functional forms near k = 0, we can still use (4.47) by substituting 
aE = 0 if E ( k )  decays faster than S ( k )  near k = 0, or by substituting as = 0 if S ( k )  
decays faster than E ( k )  near k = 0. The functional form of (4.47) is the same as the 
inviscid normalized flux (which is easily derived from the results of $3) except for 
the multiplying constant. Thus the normalized vertical density flux m / ( p 2  ) in 
the long-time limit always shows a decaying oscillation with decay rate t-'/2 and an 
oscillation period n / N ,  irrespective of any initial conditions at least in so far as the 
turbulence is initially isotropic. 

We see from (4.42) and (4.43) that, in the long-time limit ( t  -+ m), the ratio of the 
potential energy to the vertical kinetic energy becomes 

-1/2-112 
u: 

(1/2N2)p2 3 _ -  
1 2  2 '  
zu3 

(4.48) 

As discussed in $3,  this value is identical with the inviscid result and broadly agrees 
with the existing observations, experiments and LES results. Note that the result 
holds independently of the Prandtl number Pr, Reynolds number Re, Froude number 
Fr and the initial conditions (other than the important assumption of initial isotropy). 
Although the results (4.42) and (4.43) depend on the functional forms of E ( k )  and 
S ( k )  near k = 0, the ratio (4.48) does not depend on these functional forms. Even 
when E ( k )  and S ( k )  have different forms, the one which shows slower decay as k -+ 0 
(i.e. cc k2' ( k  -+ 0) with smaller 2) gives the main contribution to (4.42) and (4.43). The 
ratio (4.48) is independent of E ( k )  and S ( k ) .  An alternative explanation is that, in the 
long-time limit 7(t) given by (4.35) is dominated by the first term with superscript 
(I), and the main contribution to the integral comes from near k = 0. Then, 7 is 
approximated by 

dke-(v+K)k21 ( E ( k )  + 2S(k)) ( t+ 1). (4.49) 
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The corresponding leading term in 2 is 
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(4.50) 

If we take the ratio of these leading terms, the integrals are cancelled irrespective 
of the forms of E ( k )  and S(k) ,  leading to (4.48). In (4.49) and (4.50), the integrand has 
the same form as the steady part of the corresponding inviscid covariances, except the 
exponentially decaying factor e-(v+K)k2t. This is the reason why the viscous/diffusive 
and the inviscid results give the same ratio (4.48). 

For large Prandtl number ( P r % l )  flow, Pearson & Linden (1983) noted under 
the condition Nsin Q/{(v - K ) k 2 } - e 1  that the mode corresponding to q1 decays more 
slowly than the mode of q2. Here q1 and q 2  are the eigenvalues of the linear 
system (2.1) and (2.2), as given in (4.5) and (4.6). In usual laboratory experiments 
performed in an apparatus with a finite horizontal size D, there is a minimum in the 
horizontal wavenumber k~ which is given by kHmin = 27c/D. In such cases one vertical 
wavenumber decays most slowly, namely k3 = (2N2k$,i,/vti)1/6. This result can be 
obtained by seeking the wavenumber which makes lqll minimum under the three 
prescribed restrictions, i.e. P r + l ,  N sin O/{(v - K-)k2)41 and kHmin = 27c/D. Although 
they did not calculate the fluxes and did not consider the integrated effects over 
k-space, this theoretical vertical scale was in good agreement with the experiments by 
Linden (1980). 

It is of interest to note that in the fourth integral of (4.35), i.e. in the (W), (WI )  
and (Vrrr) terms, the main contribution comes from the wavenumber components 
given by (4.39). In the limit of P r + l ,  this value of ko agrees with that of the 
‘most slowly decaying mode’ given by Pearson & Linden (1983) (see their equation 
(12)). The main contribution to the fourth integral comes from the coexisting 
limit of sin8 = kH/k -+ 0 as we have shown already, indicating that this integral 
shows the decay in horizontal layers as observed by Pearson & Linden (1983). 
The integral contains only the contribution from imaginary a (high-wavenumber 
components which satisfy N sin Q/{1v-tilk2} < 1/2) and this is similar to the condition 
NsinQ/{(v - x)k2}41 assumed in Pearson & Linden (1983) along with P r % l .  Then 
the integral comprises the ‘generalized’ conditions for the decay in horizontal layers, 
without strong limitations of P r % l  or N sinB/{(v - K-)k2}41. However, as we have 
seen already, this integral decays like K t-(’+s/2) in the limit of t --+ CE and decays 
faster than the first integral of (4.35) as given by (4.42). If the flow is unbounded 
as is assumed in this analysis, the most slowly decaying mode has the wavenumber 
k -+ 0, and the main contribution to the integral in the k-space also comes from 
near k = 0 in the long-time limit. If the flow is bounded as in Pearson & Linden’s 
(1983) experiments, the wavenumber components that contribute most become non- 
zero and the decay rate is different. Further analyses are necessary to assess the 
effect of the boundedness of the fluid. It is important to note that only the fourth 
integral represents the decay in horizontal layers, even if it does not decay most 

It is significant that the horizontal layering occurs independent of the Prandtl 
number when P r  # 1. On the other hand, when P r  = 1 (v - ti = 0), the integration 
region vanishes in the fourth integral of (4.35) since (2N sin Q/ lv - + 00. Indeed 
(4.28) is reminiscent of the first and third integrals of (4.35), which do not show a 
decay in horizontal layers. Thus the horizontal layering does not occur when P r  = 1. 

A striking feature of homogeneous stratified turbulence is that initially (when 

slowly. 
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F r + l )  it decays at much the same rate as neutrally stratified turbulence (e.g. Brit- 
ter et al. 1983). In this range, the stratification has an enormous effect on vertical 
diffusion. But when Fr < 1, it is observed that the turbulence changes into layer- 
like motions, as in Pearson & Linden (1983). We can explain this phenomenon by 
considering the change to an effective turbulent Prandtl number Pr,  based on the 
eddy diffusion for scalar and momentum, which can be substituted for P r  in our 
analysis to investigate the nonlinear effects. For neutral turbulence (i.e. Frl+ 1) the 
turbulent Prandtl number satisfies Pr ,  d 1 (Townsend 1976), while for stably strat- 
ified turbulence, when Frl d 1, Pr ,+l .  Our results described above are consistent 
with the observations that, in the parameter region of Pr,  z 1, as in the initial time 
development of the stratified turbulence, layering does not occur and the decay is 
largely isotropic. They also explain that, as the turbulence decays with time and 
P r ,  becomes larger (Prr+ l), the layering as observed by Pearson & Linden (1983) 
occurs. 

Using DNS, Gerz & Yamazaki (1993) computed covariances using a coarse (643) 
and a fine ( 1283) grid. They found an increasing difference over time, which reaches 
a maximum at Nt/271 z 0.25, which they explained as due to the differences in high- 
wavenumber components (see their figures 11 and 12c,e). However, the difference 
decreases again with time and at Nt/271 w 0.5 almost vanishes. This suggests 
that the contribution from low-wavenumber components becomes dominant and the 
differences at high wavenumbers becomes less important in the long time. Because of 
the periodic boundary condition, DNS can resolve the 'large' scale only to the scale 
of integer wavenumber 1. This leads again to the significant differences between DNS 
and RDT results after a further longer periods. 

We finally note the behaviour of the 'quad' antiphase-spectrum Qp3. Using RDT, 
this can be calculated as 

i 
Qp3(kr t )  G - -p^ * f i 3  - G3*p^ 

2 
- - Q P 3  (k,O)e-('+dk'f (4.51) 

This shows that, if the initial value is Qp3(k,0) = 0, then Qp3(k, t )  = 0 for all time. 
The measurement of the phase angle 8 = tan-'(Qp3/cPp3) in the experiments (figure 
22 of Lienhard & Van Atta 1990; figure 16 of Yoon & Warhaft 1990) shows that 
initially 0 v 180" except at high wavenumbers where cPP3 2: 0. Therefore Qp3(k,0) 21 0. 
Although the experiments show that 8 fluctuates rapidly with the wavenumber when 
the vertical density flux piij vanishes, it does not necessarily mean that Qp3(k, t )  takes 
large values. If the initial quad spectrum Qp3(k. 0), and therefore Qp3(k, t )  have small 
deviations from zero, a large scatter of phase angle 8 results when cPp3 N 0. 

5. Comparison with DNS and experiments 
Now we compare our theory with the existing direct numerical simulations and 

laboratory experiments. In all the examples shown below for comparison with DNS 
and experiments, we use an initial isotropic kinetic turbulent energy spectrum E ( k )  
which satisfies (3.13): 

112 5 

E ( k )  = KEo (k) (t) k4e-2k2/ki, (5.1) 
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with ko being the peak wavenumber. For the potential energy spectrum S ( k )  we use 
the same form as the kinetic energy spectrum which is given by 

and satisfies (3.14). These spectral forms correspond to the final period of decay 
of turbulence and have been used in the relevant DNS for unsheared flows (Riley 
et al. 1981 ; Metais & Herring 1989; Gerz & Yamazaki 1993). These give E ( k ) ,  S ( k )  cc 
k4 in the limit of k -+ 0. In the experiments, E(k) ,  S(k)  cc k2 is more usual. However, 
the use of 

which gives E ( k ) , S ( k )  cc k2 (k  --+ 0) did not show qualitative differences in the 
subsequent results, except for the decay rate of the turbulence. Therefore, we use 
(5.1) and (5.2) throughout the paper for comparison with both the DNS and the 
experiments. Some differences due to the initial spectral forms observed in comparison 
with the experiments are described where appropriate. 

Figure 2(a) shows the time development of the normalized vertical density flux 
obtained by Gerz & Yamazaki (1993) for Pr  = 1. In this example the initial kinetic 
energy is zero (KEo = 0) and the potential energy spectrum is given by (5.2). They 
showed that, when the initial potential energy is large (their case B has energy 256 
times larger than case C, and case A has energy 16 times larger), the flux decays 
faster with time and the oscillation period increases for Nt/271 > 1.5. Note here 
that p u , / ( p 2  ug ) = -%/( T 2  u: ), if the perturbation temperature T is used 
instead of the perturbation density. Although Gerz & Yamazaki (1993) did not 
give the time development of the turbulent Froude number Fr, the energy transfer 
spectrum decays with time and even in their most energetic case B, it decays to a 
very small value after Nt/271 = 0.48, showing that the nonlinear effect would be 
negligible after that time. Since P r  = 1 and KEo = 0, the fluxes obtained by RDT 
with viscous and diffusive effects agree with the inviscid fluxes as given by (4.33). 
The RDT results do not depend on the form of S ( k ) .  This is shown in figure 2(b).  
Since (4.33) depends only on N t  and not on v or IC (i.e. Re or Fr) ,  the difference 
between figures 2(a) and 2(b) comes only from the nonlinear effect. Gerz & Yamazaki 
(1993) argued that their case C, which has the smallest turbulence energy, shows 
very weak nonlinearity since the oscillation period is approximately N t  = 71. This 
is verified here by the almost complete agreement between their case C and RDT 
results for Nt/271 < 2.5. We see also that the amplitude agrees well. Some differences 
for larger times (i.e. Ntl2.n > 2.5) are likely to arise because DNS cannot resolve 
the larger scales (k  w 0) whose effect becomes dominant after a long time. We can 
say that the stronger decay and the increase of the period notable in cases A and B 
are the purely nonlinear effect due to the large turbulence energy. Gerz & Yamazaki 
argued, quoting a personal communication from H. Wijesekera, that the majority 
of turbulent patches observed in the ocean correspond to their case C, although 
noticeable minority correspond to their case B. Thus, case C is representative of the 
natural turbulence in geophysical contexts. 

As has been noted in $3, the large negative initial value of the normalized flux at 
t = 0 (strong countergradient flux) given by DNS (= -0.913) agrees with the inviscid 
RDT result (= -(5/6)'/' = -0.913). In this case the effect of viscosity/diffusion is 

-1/2--1/2 -1/2-1/2 



Linear processes in unsteady stably stratijied turbulence 
- - , , . . . , . I . I ' , . t . l - l . r - l  

323 

(y:= 

--0.8 
0 0.8 1.6 2.4 

NtJ27c 

0.913 --+ 
0.8 

0.4 
I "3" 
N 

-0.4 

-0.8 
0 0.8 1.6 2.4 

Ntl27c 
FIGURE 2. Time development of the normalized vertical density flux when P r  = 1 and KEo = 0. 
( a )  DNS results by Gerz & Yamazaki (1993, figure 8): - case A (PEo = 0.46 in their 
units); - ~- -- --, case B (PEo = 7.37); - -~ - - - -, case C (PEo = 0.029). ( b )  RDT. In DNS the 
nonlinear effect would be negligible when N t / 2 n  > 0.48. 

absent even in a long-time development when the results are solely due to linear 
effects. 

Figure 3 shows the comparison of the normalized vertical density flux obtained 
by RDT with the DNS results by Metais & Herring (1989). In this case P r  = 1 
and PEO/KEo = 0.05. In DNS the turbulent Froude number satisfies Fr < 1 when 
N t  > 2 (figure 7 of Metais & Herring 1989) and the RDT would be applicable for 
that period. In RDT we assume the same form for E ( k )  and S ( k )  as in (5.1) and (5.2), 
and the normalized flux agrees with the inviscid flux as has been shown in (4.32). The 
form of E ( k )  is the same in DNS and RDT, and is given by (5.1). However, in DNS, 
an unstratified calculation was done before stratification was switched on at time 
t = 0.685 to match the experimental conditions. This causes a change in the 'initial' 
kinetic energy spectrum and leads to the uncertainty in the initial condition necessary 
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FIGURE 3. Time development of the normalized vertical density flux when P r  = 1 and 
PEo/KEo = 0.05. - - - -, DNS by Mitais & Herring (1989, figure 3); , RDT. 
In DNS Fr < 1 is satisfied when N t  > 2. 

for the comparison with RDT results. Recent similar DNS by the same group 
(Kimura & Herring 1996) shows that, at the time when the stratification is switched 
on, the spectrum near k = 0 gives approximately E ( k )  cc k2 and is different from 
E ( k )  cc k4, which is given by (5.1). This difference leads to the different subsequent 
time development. The functional form of S ( k )  is not explicitly given in the paper 
of Mktais & Herring (1989). There is also an uncertainty in the spectral form of 
S ( k )  used in DNS. These differences in the initial conditions make the comparison 
between DNS and RDT incomplete. 

However, as equation (4.27) shows, the zeros of the flux are independent of E ( k )  
and S ( k )  when P r  = 1, and the differences between zeros of the flux result purely 
from nonlinear effects. We find that third and fourth zeros agree but second and 
fifth zeros show some differences. On the other hand, figure 2(a) shows that, even 
when the turbulence energy is very large, the zeros agree with the RDT, at least for 
the first five zeros. This suggests that the difference of some zeros is not an effect of 
nonlinearity. The effect of some numerical errors in DNS is a plausible explanation 
here. We note that the initial peak value of the normalized flux agrees fairly well 
if we use the same PEo/KEo in DNS and RDT. This illustrates the importance of 
the initial conditions KEo and PEo in the unsteady turbulence. The faster decay of 
the normalized flux in DNS would be the nonlinear effect since (4.47) shows that the 
decay rate in the long-time limit is independent of the initial spectrum form. 

Figure 4 shows the time development of the trace components of the anisotropy 
tensor defined by 

When bii = 0 ( i  = 1,2,3), the turbulence is isotropic. Figure 4(a), which is case C 
(small turbulence energy) of Gerz & Yamazaki (1993), agrees quantitatively with the 
RDT result given in figure 4(b). When P r  = 1 and E ( k )  = 0, the anisotropy tensor in 
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FIGURE 4. Time development of the trace components of the anisotropy tensor b J i  = 1,2,3) when 
P r  = 1 and KEo = 0. (a) DNS by Gerz & Yamazaki(l993, figure 9c) ( b )  RDT. 

RDT agrees with the inviscid result, since the integrals containing S ( k )  are cancelled 
out. The trace components are 

1 
3' 

(5 .5)  

- iz d0 cos' 0 sin 8 cos(2Nt sin 8) 
- _  bll = b22 = 

1 - 5 lK d0 cos2 8 sin 0 cos(2Nt sin 8) - - d0 sin3 8 cos(2Nt sin 8) : lK 
and 

1 
3' 

- i ln d0 sin3 8 cos(2Nt sin 0) 
-- (5.6) b33 = 

1 - 1' d8 cos2 8 sin 8 cos(2Nt sin 8) - d8 sin3 0 cos(2Nt sin 0) 
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In the limit of t -+ 0, we obtain 
7 bll = b22 = -30, 

b33 = is, I 

and in the long-time limit (t  3 GO) we obtain 

(5.7) 

(5.9) 1 bll = b22 = - 5 ,  

b33 = 3. 1 (5.10) 
These agree well with the DNS results by Gerz & Yamazaki (1993). The small 
difference at long time can only come from the weak nonlinearity and the effect of 
the periodic boundary conditions used in DNS. 

Figure 5 shows the comparison of the normalized flux with air flow experiments by 
Yoon & Warhaft (1990). In this case, P r  = 0.7, Re = 4050, = 84.8. If we set the 
ratio PEo/KE0 = 0.15 so that the initial peak value of the normalized flux (0.68) agrees, 
subsequent time development agrees well. It seems that the excitation of turbulence 
begins earlier than t = 0 in the experiment. The agreement is remarkable considering 
the likely difference in the initial spectral form of E ( k )  and S ( k ) .  Note the weak 

-1/2-112 
countergradient flux ([-pi&/(p2 ti: ) I m a x  N 0.2) in this case ( P r  < 1) compared to 
the previous cases (figures 2 and 3) where P r  = 1. The weak countergradient flux for 
P r  < 1 can be inferred from our expression for the flux (4.22) as discussed in 94. 

Figure 6 shows the corresponding one-dimensional cospectrum -kl Op3(k1). In 
these figures, positive -kl 0,3(kl) means countergradient flux. The vertical scale of 
the RDT results is arbitrary since the modulus of -Op3(kl) is proportional to the 
initial energy of the turbulence. We can easily determine the initial energy so that the 
order of magnitude agrees with the experiments. In spite of the likely difference in 
the initial energy spectrum forms E ( k )  and S ( k ) ,  the time development is qualitatively 
the same in these figures. 

We see that the countergradient flux is retarded at high wavenumber, while it 
occurs faster at lower wavenumbers. These results for low Prandtl number flow 
( P r  < 1) can be inferred from (4.25). In this case there is a slow development 
of the countergradient flux at much lower wavenumbers. We should note that the 
one-dimensional cospectrum (4.25) has a more complicated form than the three- 
dimensional cospectrum (4.21), so that this development of the countergradient flux 
at the lowest wavenumbers is not as easily apparent, but can be clarified from (4.25). 
In fact, the precursor countergradient flux at high wavenumbers occurs even when 
P r  = 1 as we discussed in 94! This effect is still apparent at P r  = 0.7. Some of 
these complex differences do not occur in the three-dimensional spectral functions, so 
that cautious interpretation is necessary of experiments where only one-dimensional 
spectra are measured. 

In figure 6 we observe that the peak wavenumber kl  in the one-dimensional 
cospectrum is lower in the experiments than in RDT. This would be partly due to 
the difference in the initial energy spectrum forms of E ( k )  and S(k) .  As noted at the 
beginning of this section, the spectrum in the usual experiments has an asymptotic 
form more similar to E ( k ) , S ( k )  cc k2 ( k  -+ 0), which is different from E ( k ) , S ( k )  cc k4 
( k  -+ 0) used in the RDT (figure 6b). Indeed if we use (5.3) instead of (5.1) and (5.2) 
in the RDT, the peak wavenumber decreases and approaches the experimental value. 

A further comparison with the air flow experiments by Lienhard & Van Atta (1990) 
(their case of N = 2.42 s-' and mesh size Lo = 5.08 cm) is shown in figure 7. In 
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FIGURE 5. Time development of the normalized vertical density flux when P r  = 0.7. (a) Wind 
tunnel experiments by Yoon & Warhaft (1990, figure 14b, F r  < 1 when Nt/27c > 0.15): A, 
F r  = 84.8 ,E  ~ 4 0 5 0 ;  0, % = 1 1 4 , z  = 5100; f, fi = 1 2 7 , s  = 6070; 0,  = 1 9 2 , E  = 6040; 
A, % = 253,Re = 5670. Wind tunnel experiments by Lienhard & Van Atta (1990, figure 2b, 
Fr < 1 when Nt/2n  > 0.25); 0, % = 17.1 ,E  = 7100; B, ( b )  RDT 

- 

= 2 2 , z  = 7900. 
(E = 84 .8 ,E  = 4050, PEo/KEo = 0.15, ko = 30). 

this case P r  = 0.7, Re = 7100, = 17.1 and PEO/KE0 = 0.14. Here, PEo/KEo is 
estimated from its value at their most upstream measuring point. In their experiments, 
countergradient flux, if it occur is very weak. Very weak (or vanishing) countergradient 
flux at P r  = 0.7 cannot be explained by RDT, although the reduction of P r  from 
1 leads to larger cogradient flux and weaker countergradient flux as we can infer 
from (4.25). A countergradient flux localized at low wavenumbers (see their figure 20) 
requires an explanation based on the nonlinearity of turbulence. As discussed in $2, 
the validity of RDT is high when the turbulent Froude number Fr is small. As shown 
in figure 18 of Yoon & Warhaft (1990), Fr is smaller (about 1/2) in the experiment 
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FIGURE 6. Time development of the one-dimensional spectrum -kl Op3(kl, t )  corresponding to figure 
5 ( P r  = 0.7, = 84.8, Re = 4050). (a) Wind tunnel experiments by Yoon & Warhaft (1990, 
figure 15b, x:distance from the grid, M:mesh length of the grid, Fr < 1 where x/M > 76.5.) (i) 
x / M  = 36.5; (ii) 76.5; (iii) 116.5; (iv) 156.5; (v) 196.5; (vi) 236.5. ( b )  RDT (PEo/KEo = 0.15, 
ko = 30). 

of Yoon & Warhaft (1990) than in the experiment by Lienhard & Van Atta (1990) 
at least for the initial stage 0 < N t / 2 7 ~  < 0.4. Thus the nonlinear effect is smaller 
in the experiment of Yoon & Warhaft (1990). This explains why the experiments 
by Yoon & Warhaft (1990) give better agreement with RDT. In figure 5(a), Fr < 1 
where Nt /27~  > 0.15 (Yoon & Warhaft 1990, figure 18), while in figure 7(a), Fr < 1 
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FIGURE 7. Time development of the normalized vertical density flux when P r  = 0.7. (a)  Wind 
tunnel experiments by Lienhard & Van Atta (1990, figure 2b, F r  < 1 when Nt/2n > 0.25): 0, 

- F r  = 17 .1 , z  = 7100; 0, E = 2 2 , z  = 7900; V, E =23,% = 8400; x ,  E-= 4 2 , E  ~ 8 4 0 0 ;  +, 
F r  NN 3 1 , z  = 3400; *, = 62, Re =z 4200. (b )  RDT ( F r  = 17.1, Re = 7100, 

- 

= 4 1 , z  = 4400; 0, 
PEo/KEo = 0.14, ko = 30). 

only where N t / 2 n  > 0.25. Yoon & Warhaft also considered the difference in the 
ratio of the initial temperature fluctuations to the mean flow energy as one of the 
possible explanations for the different strength of the countergradient flux in the two 
experiments. In their most stable cases, the ratio in the experiments by Lienhard & 
Van Atta was about five times larger than that in Yoon & Warhaft. According to 
Yoon & Warhaft( 1990), Dr M. Rogers found in his DNS that if his code is run with 
substantial initial temperature fuctuations, no counter heat flux occurs. Therefore, 
their surmise is consistent with our explanation. 

If we consider the modelling of turbulence, we should use a lower effective Prandtl 
number so that the countergradient flux becomes weaker. At the same time, we have 
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to use a smaller Reynolds number so that the cogradient flux does not become too 
large. 

It is of interest here to note the time development of q(t) and q(t). In the 
experiments by Lienhard & Van Atta (1990, figures 5, 6) and Yoon & Warhaft 
(1990, figure 4), they note that q(t) shows similar decay to isotropic unstratified 
turbulence, almost independent of the Froude number ‘r. On the other hand, q(t) 
shows deviations from the isotropic value at long time, which are larger for stronger 
stratification (smaller E). These results can be qualitatively explained by (4.24) or 
(4.29) of our theory. First consider 2(t) given by (4.24). When time t is small, the 
contributions from the term 

~ ( k )  [+(v - x12k4 cosat + i ( v  - ic)k2asinat] (5.11) 

are large especially at high wavenumber since this term contains k4 and k2.  This term 
represents essentially a no-stratification (isotropic turbulence) effect and exists even 
when N = IC = 0, showing simple exponential decay of E ( k )  with time. Note here 
that this term does not oscillate with time at large k ,  since a becomes pure imaginary. 
However, the effect of this term decays rapidly because the high-wavenumber compo- 
nents decay faster with time owing to the viscosity and the diffusion. The examination 
of the contribution of the two terms in (4.24) in the long-time limit ( t  + co) shows 
that the effect of the first term of (5.11) decays like t-(’+3) and the second term of 
(5.1 1) decays like t-(’+2) if the initial spectra are given by (4.40) and (4.41). Where a is 
imaginary, (5.11) is the ‘Pearson & Linden’ mode discussed in 54.2 but it decays faster 
like t-(’+9/2). Then, as time goes on, the effect of the lower-wavenumber components 
becomes dominant. At this stage, the effect of the term 

N~ sin2 8 [ ( ~ ( k )  + 2 ~ ( k ) )  + ( ~ ( k )  - 2 ~ ( k ) )  cos at] (5.12) 

becomes dominant. At low wavenumbers with real a, this term shows oscillatory 
behaviour with time, leading to the oscillation of q(t) particularly when N is large. 
The experimental results reported by Yoon & Warhaft (1990, figure 4) show the 
time oscillation of q(t) at their lowest Froude number fi (at largest N ) .  Their 
measurement of the time development of 0 3 3  (their figure 5 )  shows that only the low- 
wavenumber components oscillate with time, while the high-wavenumber components 
show monotonic decay. This is again consistent with our results. When the time t 
becomes much larger ( t  3 co), only the first term of (5.12), i.e. N 2  sin2 B(E(k)+2S(k ) ) ,  
becomes effective and (4.24) reduces to (4.50). Then the oscillations must cease in the 
long - time. Examination of the contribution of (5.12) in the integral representation of 
u i ( t )  shows that in the long-time limit, the first term of (5.12) decays like t-(1+1/2) while 
the second term decays like L-( ’+~) .  This is consistent with our qualitative discussions 
above. 

We should note at the same time that the previous experimental data for q(t) and 
u:(t) are usually plotted as functions of the distance from the grid x / M ,  i.e. oft ,  and 
not of Nt .  Since the oscillatory behaviour in (4.24) is mainly regulated by Nt ,  a larger 
time t is necessary to identify the oscillation if N is small. This is exactly true when 
P r  = 1 (see (4.30)). Even when P r  # 1, in which case the integral of the complicated 
function of at (see (4.24)) determine the time development, the main contribution as 
time elapses comes from near k = 0 and 0 = x/2, which makes a = 2N. This might 
be another reason why in the previous experiments the oscillation in q(t) was not 
observed when N is small. 

- 
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Next we consider q(t). Since the expression for q(t) for general Pr  is lengthy, we 
have not given the results in $4. However, we can predict the qualitative behaviour 
from the results for P r  = 1 given by (4.29). As we have seen in the inviscid results 
(§3), the integral in d0 cos2 0 sin 0 cos(2Nt sin 0) (5.13) 

in (4.29) becomes zero if we apply the steepest descents. This shows that this integral 
decays faster than cc t - ‘ /2 .  We could see this effect also in the difference between 
figures l(a) and l(b), where the results were for inviscid fluid. Since the integral (5.13) 
is the only part in the expression for q(t) that contains N, the effect of stratification 
decays very rapidly in q(t) compared to q(t). This explains why in the experiments, 
the effect of N (or E), in particular the oscillatory behaviour with time, was not 
observed in the time development of q(t). As we have seen in figure 4, for the time 
development of the anisotropy tensor b,, b2 and b3 there is quantitative agreement 
between DNS and RDT when the initial turbulence energy is small. This indeed shows 
that if the nonlinear effect is weak, RDT predicts quantitatively the time development 
of q( t )  and q( t). 

From the results of a DNS similar to Metais & Herring (1989), Kimura & Herring 
3/2 (1996) calculated the velocity gradient skewness factors S, = - ( a ~ / d x ) ~ / ( d u / d x ) ~  

and S, = - ( a ~ ; / a s ) ~ / ( a ~ ; / c ? z ) ~ ~ ’ ~  and showed that Sz reduces to nearly zero more 
rapidly with time than S,. This suggests that the nonlinear energy transfer in the 
horizontal direction, which would be indicated by S,, is less easily suppressed by the 
stratification and this would also explain why q ( t ) ,  compared to q(t), shows a decay 
rate more similar to isotropic neutral turbulence ( F r  = a), in which nonlinear effects 
are larger. 

Figure 8 shows the comparison with the thermally stratified water experiments 
by Komori & Nagata (1995). Their experiments are for two-layer flow and not 
for a continously stratified flow, but their one-dimensional cospectrum shows clearly 
- the effect of the large Prandtl number ( P r  > 1). Here, P r  = 6, Re = 2500, 
Fr  = 2.86 (at the interface of the two fluids) and the value of PEo/KEo estimated 
from the initial maximum of their normalized vertial density flux (2: 0.6) is 0.11. 
The comparison with RDT results shows good agreement in that the enhanced 
countergradient flux at high wavenumbers exists. In the salt-water experiments by 
Itsweire et al. ( 1986) no countergradient flux was observed at high wavenumber, but 
Lienhard & Van Atta (1990) speculate that this might have been the result of relatively 
poor high-wavenumber resolution in their experiments. We should be careful about 
the interpretation of the one-dimensional spectrum since, as already noted in $4, a 
transitory countergradient flux at high wavenumbers appears even when P r  = 1. 
However, comparison of the results of Komori & Nagata with the corresponding low 
Prandtl number ( P r  = 0.7) wind tunnel experiments for two-layer flow by Jayesh & 
Warhaft (1994) show clear differences. As in the continuously stratified fluid, Jayesh 
& Warhaft found that countergradient flux first appears at low wavenumbers. We 
should mention here that in figure 8(a), the turbulent Froude number Fr was less 
than 1 where x/M > 10 (Personal communication with Komori & Nagata), showing 
the validity of the linear theory there. 

To understand the decay of turbulence due to viscosity and diffusion, we show 
in figure 9 the time development of the turbulence energy from the DNS of Gerz 
& Yamazaki (1993) (their case C, i.e. the case with the smallest turbulence energy) 
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FIGURE 8. Time development of the one-dimensional spectrum -fO &, t )  (f = kl  U / 2 n )  near the 
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where x / M  > 10). (b)  RDT (PEoIKEo = 0.11, ko = 25). 
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FIGURE 9. Time development of the kinetic, potential and total turbulence energy when P r  = 1 and 
KEo = 0. , KE/KEo;  - - - -, PE/PEo; - - - - - -, TE/TEo. (a) DNS by Gerz & 
Yamazaki (1993, figure lc). ( b )  RDT. 

and the corresponding results from RDT. In this case P r  = 1, E ( k )  = 0 and S ( k )  
has the form of (5.2). RDT the turbulent kinetic energy K E ( t )  and the turbulent 
potential energy PE( t )  can be easily calculated from (4.28)-(4.30) by setting E ( k )  = 0. 
Then, the total turbulence energy is obtained as TE( t )  = K E ( t )  + PE(t). The results 
are 

= f ./I dkS(k)e-2’k’‘ [ 1 - 1 lx do sin 6’ cos(2Nt sin 0) , (5.14) 1 
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1 -  - 2  

2 P P  5 im dkS(k)er2vkk2f [I + 2' 1' d0 sin 0 cos(2Nt sin 0) ] , (5.15) 

TE(t) = dkS(k)e-2vk2'. Lm (5.16) 

this integral analytically by substituting (5.2) and find the decay 

(5.17) 
TE(0) - dkS(k) = (  1 + vkit ) I j 2 .  

Using the same Reynolds number Re = 57.4 and the same peak wavenumber in the 
initial energy spectrum ko = (8n)'I2 as in Gerz & Yamazaki (1993), we obtain the RDT 
counterpart (figure 9b) of the DNS results (figure 9a). The comparison is good except 
that there is a slightly faster decay in DNS. Thus the effective viscosity/diffusion (in 
this case v = Ic) is a little larger in DNS. If the numerical viscosity is negligible in DNS, 
the difference comes only from the nonlinearity. This supports again the conjecture 
that, to incorporate nonlinearity effects, use of lower Prandtl and Reynolds numbers 
are appropriate. When the nonlinearity is not large, its effect would be well described 
by such choices. As we have seen in figures 2 and 4, the non-dimensional ratio of 
the covariances agrees excellently with RDT, even when there are some deviations in 
the decay rate of each covariances or the turbulent energies (figure 9). This shows 
that the functional forms of the covariances are not affected by the nonlinearity, the 
only differences being in the effective value of the viscosity/diffusion coefficient or 
the Reynolds/Prandtl numbers. 

It is of interest that, in the long-time limit ( N t  + a), RDT shows a decay 
proportional to t-5/2. This is exactly the same as the 'final' stage of decay of 
three-dimensional unstratified turbulence (Batchelor 1953 j having the same low- 
wavenumber spectrum K k4. This rate is greater than that of the initial, self-similar 
and inertially dominated stage for which KE(t )  K trr, where 1 < r < 1.3. The decay 
rate in the long-time limit depends on the form of S(k) near k = 0 so that if S ( k )  K k2 
then the result differs from (5.17) and becomes TE(t) cc tr3I2, as we have seen in $4. 
Gerz & Yamazaki (1993) did not give results for a very long-time development. In 
the most energetic case B of Gerz & Yamazaki (see their figure 2), which shows a 
tendency to isotropy in a rather short time, the decay is proportional to t-'.3 when 
Nt/2n  > 1.0, while the smallest turbulence energy case C showed much slower decay 
at least for Ntl2.n < 3. In comparison of the simplified two-point closure EDQNM 
model and its linearized version (RDT) with the DNS results, van Haren, Staquet & 
Cambon (1996) found that the decay rate in RDT is smaller than EDQNM and DNS 
when Nt /2n  d 1. These results can be attributable to the weaker or no nonlinear 
transfer of energy in strongly stratified turbulence or in RDT to smaller scales where 
the energy is mainly dissipated. However, the decay rate in stratified turbulence 
changes with the elapsed time. Indeed, the long-time simulation of Mktais & Herring 
(1989) shows an 'increasing' decay rate with time similar to (5.17). (See run 2 A  of 
their figure 13, where P r  = 1, E(k) is given by (5.1), and S(k) = 0. This difference 
in the initial energy spectra E(k) and S ( k )  does not change the theoretical prediction 
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of total energy decay given by (5.17).) In (5.17) the decay rate increases from to at 
r = 0 to tr5/* as t --+ co. In their final period of computation ( N t  = loon), the energy 
decays like t r2 ,  which is tending to the RDT result. Finally it is important to note 
that (5.17) explicitly shows that the decay rate is independent of the stratification 
parameter N and is determined by the viscosity 11, as was suggested by van Haren 
et al. (1996) from their numerical results. Therefore care should be taken if time is 
non-dimensionalized by N in discussions of the decay rate. 

6. Conclusions 
We have investigated the time development of stratified unsheared turbulence using 

rapid distortion theory (RDT). The result shows that the time-dependent oscillations, 
including the countergradient phenomena, can largely be explained in terms of phase 
lags in linear oscillations rather than in terms of any new kind of nonlinear mixing 
processes. Our main results can be summarized as follows. 

For inviscid fluid, we have obtained the time-dependent covariances in explicit 
analytical forms and showed their short- and long-time limits. These limits have 
clarified that the initial turbulent kinetic and potential energy determine the final 
partition of energy among each velocity component and density perturbation. The 
covariances depend only on the initial total kinetic and potential energy and not on 
the precise form of the energy spectra. The oscillation period of the covariances, 
including the zeros of the vertical density flux, are completely independent of the 
initial condition. 

For viscous/diffusive fluids, we have given the analytical form of the time- 
dependent three-dimensional spectral functions and expressed the corresponding 
one-dimensional spectra and covariances by rather simple integrals, which enable 
us to see the effect of the Prandtl and Reynolds numbers clearly. We have found that 
a high Prandtl number ( P r  > 2 )  leads to the countergradient flux occurring at high 
wavenumber, while a low Prandtl number ( P r  < 1) inhibits the countergradient flux 
at high wavenumber. These explain the difference between the water tank and wind 
tunnel experiments. The analysis shows that special care is needed in interpreting the 
three-dimensional and the one-dimensional spectra. One-dimensional spectra show 
the transitory countergradient flux at high wavenumber even when P r  = 1, which 
does not occur in the corresponding three-dimensional spectra. 

For viscous/diffusive fluids, the asymptotic forms of the variances and covariances 
in the long-time limit are determined by the initial spectral form of the kinetic and 
potential energy, i t .  E ( k )  and S ( k ) ,  near k = 0. Specifically, it has been shown that 
the ratio of the turbulent potential energy to vertical kinetic energy in the long-time 
limit is 3/2 and independent of any initial conditions (other than the assumption of 
isotropy), Prandtl number, Reynolds number and Froude number. This should help 
modelling real atmospheric or oceanic turbulence (Schumann & Gerz 1995). The 
asymptotic form of the normalized vertical density flux pU3/(p2 u: ) also shows 
similar independence of the initial conditions and the non-dimensional parameters. 

When P r  = 1, all the wavenumber components in the three-dimensional spectrum 
function oscillate in phase, as in an inviscid fluid. Then the effects of viscosity and 
diffusion are limited to the damping of all the wavenumber components in phase. 
The oscillation periods of the covariances also agree with those for an inviscid fluid 
and do not depend on the initial conditions (except for the assumption of isotropy). 
If P r  = 1 and the initial turbulent kinetic or potential energy spectrum has the 

-1/2-1/2 
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same form except for the multiplying constant, the non-dimensional ratios of the 
covariances, such as the normalized vertical density flux or the anisotropy tensor, 
agree exactly with the inviscid results. 

To estimate certain effects of nonlinearity which might dominate in high Reynolds 
number turbulence (cf. Townsend 1976), the use of an effective (eddy) viscosity 
and diffusion coefficient has been considered. (There are of course other effects of 
nonlinearity, such as modulating the frequency of the oscillation, not described by this 
approximation.) This leads the eddy Prandtl number P r ,  (see Townsend 1976, p. 358) 
and Reynolds number to be smaller than the molecular values. Applying these values 
in the linear theory leads to the strength of the countergradient flux decreasing and 
our results become closer to the moderate Reynolds number laboratory experiments. 
We note that in atmospheric measurements of unsteady stably stratified turbulence 
at very high Reynolds number (where Re w lo4 and Fr N_ 1) such as those described 
by Nai-ping, Neff & Kaimal (1983), countergradient fluxes were observed. Significant 
countergradient fluxes also occur when density layers emerge in decaying turbulence. 
Barenblatt et al. (1993) proposed a novel mechanism based on a nonlinear time-delay 
model of Richardson number-dependent eddy diffusion. The range of applicability 
of this concept needs further examinations. 

Finally we note that in steady or slowly varying stably stratified turbulence at 
high Reynolds numbers, such as described by Hunt et al. (1985), no systematic 
countergradient fluxes were observed. 
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